Course curriculum
-
1
Introduction to Python Programming for Data Analytics
-
1. Motivation for Learning Python Programming Language
-
2. Anaconda Installation
-
3. Introduction to Anaconda and Jupyter Notebook Environment
-
4. Introduction to Jupyter Notebook Interface
-
5. Introduction to Python Programming Language
-
Programming Series : 1. Syntax of a Programming Language
-
2. Newline Character
-
3. Elements, Keywords and Identifiers
-
4. Comments and Statements
-
5. Variable Assignments
-
6. Data Type I in Python Programming
-
7. Data Type II in Python Programming
-
8. Type Conversion of a Data Type
-
9. Output Formatting and Input Function
-
10. Operators in Python Programming
-
11. IF Statements
-
12. While loop Statements
-
13. For loop Statements
-
14. Break and Continue Statement
-
15. Lists-I
-
16. Lists-II
-
17. Tuples
-
18. Sets
-
19. Dictionary
-
20. Strings
-
21. Functions
-
22. Function Arguments and parameters
-
23. Built-in Functions
-
24. Recursive Function
-
25. Lambda Function
-
26. Modules,Package and Libraries
-
27. File I/O Operations
-
28. Working with Python Directory and Files
-
29. Exception Handling with Python
-
30. Comprehension in Python
-
Capstone Project : Project 1 - Reading and Converting Twitter Metadata into Information
-
Project 2 - Text Analysis of Twitter data
-
Project 3 - Creating New dictionary from Twitter data
-
Project 4 - Data Cleaning and Counting of Twitter data
-
Project 5 - Creating Function definition to check a value within Twitter data
-
-
2
Handling Data Arrays using Numpy Module
-
1. Numpy Introduction
-
2. Numpy Array Creation
-
3. Numpy Arange Reshape functions
-
4. Creating different types of Array using Numpy
-
5. Accessing Array Values
-
6. Numpy Operations
-
7. Fancy Indexing and Sorting Arrays
-
8. Array Products and Concatenation
-
9. Broadcasting
-
-
3
Advanced Data Analysis using Pandas Module
-
1. Pandas Introduction
-
2. Pandas Series
-
3. Pandas DataFrames
-
4. Handling missing data
-
5. Conditional Selection and Reindexing of a DataFrame
-
6. Data Input and Data Output
-
7. Data Processing
-
8. Grouping & Aggregation and Pivot Table
-
9. Concatenating DataFrames and Inserting new rows
-
10. Concatenation and Merging Logic
-
11. Merging and Joining DataFrames
-
12. Cartesian Product Between DataFrames
-
13. Handling Duplicates in a DataFrame
-
14. Handling Strings in a DataFrame
-
-
4
Handling DateTime Series in a DataFrame
-
1. DateTime -DateTime Creation
-
2. DateTime pandas Functions
-
3. Reading Dates with Informats
-
4. DateRange and DateOffset
-
-
5
Data Visualization using Matplotlib Module
-
1. Introduction to Matplotlib
-
2. Line Chart Plot
-
3. Plotting a Bar Charts
-
4. Histogram and Scatter Plot
-
5. Stack Plot and Pie Plot
-
6. Plotting Subplots
-
-
6
Probability and Statistics
-
1. Introduction to Statistics
-
2. Introduction to Inferential Statistics
-
3. Measures of Central Tendencies
-
4. Measures of Dispersion
-
5. Introduction to Probability
-
6. Types of Probability functions
-
7. Probability Density Function
-
8. Cumulative Distribution Function
-
9. Skewness and Kurtosis
-
10. Boxplot
-
11. Kernel Density Estimation plot
-
12. Covariance
-
13. Correlation and Causation
-
14. Introduction to Linear Regression
-
-
7
Exploratory Data Analysis using Seaborn Module
-
1. Exploratory Data Analysis using Classroom Dataset
-
2. Exploratory Data Analysis using IMD Rainfall Dataset
-
3. Exploratory Data Analysis of Real Estate Dataset
-
4. Exploratory Data Analysis using IPL player performance Dataset
-
-
8
Capstone Projects
-
Capstone Project -1
-
Capstone Project -2
-
Capstone Project -3
-
Capstone Project Assignment -4
-
Capstone Project Assignment -5
-